Environmental Guideline for the Burning and Incineration of Solid Waste

Department of Environment
Government of Nunavut
GUIDELINE: BURNING AND INCINERATION OF SOLID WASTE

Original: October 2010
Revised: January 2012

This Guideline has been prepared by the Department of Environment’s Environmental Protection Division and approved by the Minister of Environment under the authority of Section 2.2 of the Environmental Protection Act.

This Guideline is not an official statement of the law and is provided for guidance only. Its intent is to increase the awareness and understanding of the risks, hazards and best management practices associated with the burning and incineration of solid waste. This Guideline does not replace the need for the owner or person in charge, management or control of a solid waste to comply with all applicable legislation and to consult with Nunavut’s Department of Environment, other regulatory authorities and qualified persons with expertise in the management of solid waste.

Copies of this Guideline are available upon request from:

Department of Environment
Government of Nunavut
P.O. Box 1000, Station 1360, Iqaluit, NU, X0A 0H0

Electronic version of the Guideline is available at http://env.gov.nu.ca/programareas/environmentprotection

Cover Photos: Nunavut Department of Environment (left and bottom right), Aboriginal Affairs and Northern Development Canada (top right)
Table of Contents

Introduction .. 1
1.1 Definitions ... 1
1.2 Roles and Responsibilities .. 4
 1.2.1 Department of Environment .. 4
 1.2.2 Generators of Solid Waste .. 4
 1.2.3 Other Regulatory Agencies .. 4

Waste Burning and Incineration .. 7
2.1 The Combustion Process .. 7
2.2 Pollutants of Concern ... 8
2.3 Burning and Incineration Methods .. 9
 2.3.1 Open Burning .. 9
 2.3.2 Incineration .. 11
2.4 Environmental Standards .. 13
 2.4.1 Air Emissions .. 13
 2.4.2 Bottom Ash .. 14

Best Management Practices ... 15
3.1 Waste Management Planning .. 15
3.2 Wastes That Can be Burned or Incinerated ... 16
3.3 Keeping Waste Dry ... 16
3.4 Locating the Facility ... 17
3.5 Maximizing Combustion Efficiency ... 18
3.6 Ash Management ... 18
3.7 Monitoring and Record Keeping ... 19
3.8 Operator Training .. 20

The Application of Open Burning and Incineration .. 21
4.1 Open Burning .. 21
4.2 Incineration ... 23

Conclusion ... 26

References ... 27

Appendices

Appendix 1 Environmental Protection Act
Appendix 2 Modified Burn Barrel Design and Specifications
Introduction

People living and working in Nunavut often have limited options available for cost effective and environmentally sound management of household and other solid waste. The widespread presence of permafrost, lack of adequate cover material and remote locations make open burning and incineration a common and widespread practice to reduce the volume of solid waste and make it less of an attractant to wildlife. A wide variety of combustion methods are used ranging from open burning on the ground to high temperature dual-chamber commercial incinerators. Generally, high temperature incinerators are more expensive to purchase and operate and cause less pollution than do the less expensive and lower temperature methods. However, high temperature incinerators can safely dispose of a wider variety of waste than can the lower temperature open burning methods.

The Guideline for the Burning and Incineration of Solid Waste (the Guideline) is not intended to promote or endorse the burning and incineration of solid waste. It is intended to be a resource for traditional, field and commercial camp operators, communities and others considering burning and incineration as an element of their solid waste management program. It examines waste burning and incineration methods that are used in Nunavut, their hazards and risks and outlines best management practices that can reduce impacts on the environment, reduce human-wildlife interactions and ensure worker and public health and safety. This Guideline does not address incineration of biomedical waste, hazardous waste and sewage sludge. The management of these wastes requires specific equipment, operational controls and training that are beyond the scope of the current document.

The Environmental Protection Act enables the Government of Nunavut to implement measures to preserve, protect and enhance the quality of the environment. Section 2.2 of the Act provides the Minister with authority to develop, coordinate, and administer the Guideline.

The Guideline is not an official statement of the law. For further information and guidance, the owner or person in charge, management or control of a solid waste is encouraged to review all applicable legislation and consult the Department of Environment, other regulatory agencies or qualified persons with expertise in the management of solid waste.

1.1 Definitions

Biomedical Waste
Any solid or liquid waste which may present a threat of infection to humans including non-liquid tissue, body parts, blood or blood products and body fluids, laboratory and veterinary waste which contains human disease-causing agents, and discarded sharps (i.e. syringes, needles, scalpel blades).

Bottom Ash
The course non-combustible and unburned material which remains at the burn site after burning is complete. This includes materials remaining in the burn chamber, exhaust piping and pollution control devices where such devices are used.

Burn Box
A large metal box used to burn solid waste. Combustion air is usually supplied passively through vents or holes cut above the bottom of the box. An exhaust pipe or stack may or may not be attached.
Commercial Camp
A temporary, seasonal or multi-year facility with a capacity greater than 15 people and which has been established for research, commercial or industrial purposes. A commercial camp does not include a traditional camp or field camp.

Commissioner’s Land
Lands that have been transferred by Order-in-Council to the Government of Nunavut. This includes roadways and land subject to block land transfers. Most Commissioner’s Land is located within municipalities.

Contaminant
Any noise, heat, vibration or substance and includes such other substance as the Minister may prescribe that, where discharged into the environment, (a) endangers the health, safety or welfare of persons, (b) interferes or is likely to interfere with the normal enjoyment of life or property, (c) endangers the health of animal life, or (d) causes or is likely to cause damage to plant life or to property.

Determined Effort
The ongoing review of opportunities for reductions and the implementation of changes or emission control upgrades that are technically and economically feasible and which result in on-going reductions in emissions. Determined efforts include the development and implementation of waste management planning which is focussed on pollution prevention.

De Novo Synthesis
The creation of complex molecules from simple molecules.

Environment
The components of the Earth and includes (a) air, land and water, (b) all layers of the atmosphere, (c) all organic and inorganic matter and living organisms, and (d) the interacting natural systems that include components referred to in paragraphs (a) to (c) above.

Field Camp
A temporary, seasonal or multi-year facility consisting of tents or other similar temporary structures with a capacity of 15 people or less and which has been established for research, commercial or industrial purposes. A field camp does not include a traditional camp or commercial camp.

Fly Ash
Unburned material that is emitted into the air in the form of smoke or fine particulate matter during the burning process.

Hazardous Waste
A contaminant that is a dangerous good and is no longer wanted or is unusable for its original intended purpose and is intended for storage, recycling, treatment or disposal.

Incineration
A treatment technology involving the destruction of waste by controlled burning at high temperatures.
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incinerator</td>
<td>A device or structure intended primarily to incinerate waste for the purpose of reducing its volume, destroying a hazardous substance in the waste or destroying an infectious substance in the waste. An incinerator has means to control the burning and ventilation processes.</td>
</tr>
<tr>
<td>Inspector</td>
<td>A person appointed under subsection 3(2) of the Environmental Protection Act and includes the Chief Environmental Protection Officer.</td>
</tr>
<tr>
<td>Modified Burn Barrel</td>
<td>A metal drum used to burn waste that has been affixed with devices or features which provide limited increased heat generation, heat retention and holding time.</td>
</tr>
<tr>
<td>Open Burning</td>
<td>Burning of waste with limited or no control of the burn process. For clarity, open burning includes burning on the open ground or using a burn box or unmodified or modified burn barrel.</td>
</tr>
<tr>
<td>Qualified Person</td>
<td>A person who has an appropriate level of knowledge and experience in all relevant aspects of waste management.</td>
</tr>
<tr>
<td>Responsible Party</td>
<td>The owner or person in charge, management or control of the waste.</td>
</tr>
<tr>
<td>Smoke</td>
<td>The gases, particulate matter and all other products of combustion emitted into the atmosphere when a substance or material is burned including dust, sparks, ash, soot, cinders and fumes.</td>
</tr>
<tr>
<td>Solid Waste</td>
<td>Unwanted solid materials discarded from a household (i.e. single or multiple residential dwellings, other similar permanent or temporary dwellings), institutional (i.e. schools, government facilities, hospitals and health centres), commercial (i.e. stores, restaurants) or industrial (i.e. mineral, oil and gas exploration and development) facility. For clarity, solid waste does not include biomedical waste, hazardous waste or sewage sludge.</td>
</tr>
<tr>
<td>Traditional Camp</td>
<td>A temporary or seasonal camp used primarily for camping, hunting, fishing or other traditional or cultural activities. A traditional camp does not include a field camp or commercial camp.</td>
</tr>
<tr>
<td>Unmodified Burn Barrel</td>
<td>A metal drum used to burn waste that has not been affixed with devices or features which provide for enhanced heat generation, heat retention and holding time.</td>
</tr>
<tr>
<td>Untreated Wood</td>
<td>Wood that has not been chemically impregnated, painted or similarly modified to improve resistance to insects or weathering.</td>
</tr>
<tr>
<td>Waste Audit</td>
<td>An inventory or study of the amount and type of waste that is produced at a location.</td>
</tr>
</tbody>
</table>
1.2 Roles and Responsibilities

1.2.1 Department of Environment

The Environmental Protection Division is the key environmental agency responsible for ensuring the proper management and disposal of solid waste and other contaminants on Commissioner’s Land. Authority is derived from the Environmental Protection Act, which prohibits the discharge of contaminants to the environment and enables the Minister to undertake actions to ensure appropriate management measures are in place. Although programs and services are applied primarily to activities taking place on Commissioner’s and municipal lands and to Government of Nunavut undertakings, the Environmental Protection Act may be applied to the whole of the territory where other controlling legislation, standards and guidelines do not exist. A complete listing of relevant legislation and guidelines can be obtained by contacting the Department of Environment or by visiting the web site at:

The Wildlife Management Division is responsible for managing wildlife in Nunavut. Section 90 of the Wildlife Act prohibits the intentional feeding of wildlife and the placement of any food or garbage where there is a reasonable likelihood that it would attract wildlife. Once wildlife has been ‘conditioned’ to obtaining food associated with human activities, it can become dangerous and often will have to be destroyed. Further information on ways to reduce contact between wildlife and humans can be obtained by contacting the local Conservation Officer or by visiting the web site at:

The Department of Environment will provide advice and guidance on the burning and incineration of solid waste. However, it remains the responsibility of the owner or person in charge, management or control of the solid waste to ensure continued compliance with all applicable statutes, regulations, standards, guidelines and local by-laws.

1.2.2 Generators of Solid Waste

The generator, or responsible party, is the owner or person in charge, management or control of the solid waste at the time it is produced or of the facility that produces the waste. The responsible party must ensure the waste is properly and safely managed from the time it is generated to its final disposal. This is referred to as managing the waste from cradle-to-grave.

 Contractors may manage solid waste on behalf of the responsible party. However, the responsible party remains liable for ensuring the method of management complies with all applicable statutes, regulations, standards, guidelines and local by-laws. If the contractor does not comply with the requirements of the Environmental Protection Act or Wildlife Act and is charged with a violation while managing the waste, the responsible party may also be charged.

1.2.3 Other Regulatory Agencies

Other regulatory agencies may have to be consulted regarding the burning and incineration of solid waste as there may be other environmental or public and worker health and safety issues to consider.
Workers’ Safety and Compensation Commission

The Workers’ Safety and Compensation Commission is responsible for promoting and regulating worker and workplace health and safety in Nunavut. The Commission derives its authority from the Workers’ Compensation Act and Safety Act which require an employer to maintain a safe workplace and ensure the safety and well being of workers.

Department of Community and Government Services

The Department of Community and Government Services is responsible under the Commissioners’ Lands Act for the issuance of land leases, reserves, licenses and permits on Commissioner’s Lands. The Department, in cooperation with communities, is also responsible for the planning and funding of municipal solid waste and sewage disposal facilities in most Nunavut communities.

The Office of the Fire Marshal is responsible for delivering fire and life safety programs including reviewing plans to ensure incinerators and other heating devices comply with all legislation, codes and standards. The Office of the Fire Marshal derives its authority from the Fire Prevention Act, National Fire Code and National Building Code.

Department of Health and Social Services

Activities related to the burning and incineration of solid waste may have an impact on public health. The Office of the Chief Medical Officer of Health and Regional Environmental Health Officers should be consulted regarding legislated requirements under the Public Health Act.

Environment Canada

Environment Canada is responsible for administering the Canadian Environmental Protection Act (CEPA) and Canada’s Toxic Substances Management Policy. Many pollutants that are released into the atmosphere from the incomplete combustion of unsegregated, or mixed, solid waste are listed as Toxic Substances in Schedule I of CEPA, or are targeted for phase-out through the Toxic Substances Management Policy. Environment Canada is also responsible for administering the pollution prevention provisions of the federal Fisheries Act and for regulating the international and interprovincial movement of solid and liquid hazardous waste under the Interprovincial Movement of Hazardous Waste Regulations and Export and Import of Hazardous Waste and Hazardous Recyclable Material Regulations.

The Air Quality Research Division of Environment Canada is responsible for conducting research into atmospheric releases of chemicals in commercial use in Canada, measuring exhaust emissions from stationary and mobile sources and undertaking ambient air quality monitoring in partnership with provinces and territories.

Aboriginal Affairs and Northern Development Canada

Aboriginal Affairs and Northern Development Canada is responsible under the Territorial Lands Act and Nunavut Waters and Nunavut Surface Rights Tribunal Act for the management of federal lands and waters, including the impact solid waste may have on the quality of these lands and waters.
Local Municipal Governments

The role of municipal governments is important in the proper local management of solid waste. Under the Nunavut Land Claims Agreement, municipalities are entitled to control their own municipal disposal sites. Local environmental and safety standards are determined, in part, by how the land is designated under municipal government development plans (i.e. land use zoning). Solid waste may be deposited into municipal landfill sites only with the consent of the local government. The local fire department may also be called upon if a fire or other public safety issue is identified.

Co-management Boards and Agencies

Co-management boards and agencies established under the Nunavut Land Claims Agreement have broad authority for land use planning, environmental impact assessment and the administration of land and water. Activities involving the burning and incineration of solid waste may be controlled through the setting of terms and conditions in plans, permits and licenses issued by the Nunavut Water Board and other co-management boards and agencies.
Waste Burning and Incineration

2.1 The Combustion Process

The combustion, or burning, of solid waste proceeds through a series of stages. Water is first driven from the unburned waste by heat produced from material burning nearby or from an auxiliary burner. As the waste heats up, carbon and other substances are released and converted into burnable gases. This is referred to as gasification. These gases are then able to mix with oxygen. If the temperature inside the burn chamber is high enough and maintained for a long enough period of time, the hot gases are completely converted into water vapour and carbon dioxide, which is then released into the air. If the temperature inside the burn chamber is not high enough and the burn time is too short, complete conversion of the burnable gases does not occur and visible smoke is released into the air. Another result of burning at low temperatures is the creation of pollutants that were not originally present in the waste. This process is known as de novo synthesis. Dioxins, furans and other complex chemical pollutants can be formed through this process.

Ash produced from combustion takes the form of either fly ash or bottom ash. Fly ash is the fine particles carried away in the form of smoke while bottom ash is the course non-combustible and unburned material that remains after the burn is complete. The type and amount of pollutants in the fly and bottom ash depend upon what waste is burned and completeness of the combustion process.

The completeness of combustion is determined by all of the following factors:

Temperature

The temperature generated is a function of the heating value of the waste and auxiliary fuel, incinerator or burn unit design, air supply and combustion control. Complete combustion requires high temperatures. Generally, temperatures that exceed 650°C with a holding time of 1-2 seconds will cause complete combustion of most food and other common household waste. Segregation of waste is required when using methods that don’t routinely achieve these temperatures. Dual chamber incinerators, which are designed to burn complex mixtures of waste, hazardous waste and biomedical waste, must provide a temperature higher than 1000°C and a holding time of at least one second to ensure complete combustion and minimize dioxin and furan emissions. When these high temperatures and holding times are achieved, waste will be completely burned and ash, smoke and pollutant concentrations will be minimized.

Because exhaust gas temperatures vary from ambient to greater than 1000°C each time a batch waste incinerator is used, optional air pollution control systems with evaporative cooling towers and scrubbers are seldom recommended. However, it may be necessary to employ these systems with large continuous feed incinerators if additional cleaning of exhaust gas is required by regulatory authorities.

Holding Time

Complete combustion takes time. Holding time, otherwise known as retention or residence time, is the length of time available to ensure the complete mixing of air and fuel, and thus the complete burning of waste. Low temperatures, low heating values of the waste and reduced turbulence require that the holding time be increased to complete the combustion process.
Turbulence

The turbulent mixing of burnable gases with sufficient oxygen is needed to promote good contact between the burning waste and incoming air. This will help in achieving the high temperatures at which waste can be completely burned. The amount of mixing is influenced by the shape and size of the burn chamber and how the air is injected. Passive under-fire ventilation achieved during open burning does not result in sufficient turbulence for the burning of a wide variety of waste. Also, it is important not to overfill the burn chamber as airflow may be blocked and the amount of turbulence further reduced. The more advanced incineration designs provide effective turbulence through the forced introduction of air directly into hot zones.

Composition of the Waste

The heating value, wetness and chemical properties of the waste affect the combustion process and the pollutants that are contained in the resulting smoke and ash. The higher the burn temperature, holding time and turbulence that are achieved, the less effect the composition of the waste has on completeness of the burn.

2.2 Pollutants of Concern

Extreme care must be exercised when burning or incinerating solid waste. Open burning and the improper incineration of solid waste can result in environmental, health and safety hazards from the pollutants found in smoke and exhaust gases and in the bottom ash. These pollutants may either be found in the original waste itself, or may be created through de novo synthesis if sufficient temperature, holding time and turbulence is not achieved in the burn chamber.

Many different types of pollutants can be released during burning and incineration. A few of these pollutants include acid gases, trace metals, fine particulates, volatile organic compounds and semi-volatile organic compounds. Acid gases such as hydrogen chloride and sulphur oxides result from burning waste that has high levels of chlorine and sulphur (i.e. plastics). Mercury, lead and cadmium are examples of trace metals found in both fly and bottom ash when batteries, used lubricating oil and other metal-containing wastes are burned. Fine particulates are the very small particles found in smoke created by incomplete combustion and can cause respiratory irritation in humans and wildlife.

Dioxins and furans are pollutants that have drawn much attention in recent years because they have been linked to certain types of cancers, liver problems, impairment of the immune, endocrine and reproductive systems and effects on the fetal nervous system. These pollutants persist in the environment for long periods of time, bioaccumulate in plants and animals, result predominantly from human activity and have been identified for ‘virtual elimination’ in Canada under the federal Toxic Substances Management Policy. The incineration of solid waste accounts for almost 25% of the dioxin and furan emissions in Canada each year. They are formed in trace amounts by de novo synthesis during the low temperature burning of waste containing organic compounds and chlorine (i.e. chlorinated plastic, PVC pipe, marine driftwood).

The most effective way to reduce or minimize the release of pollutants is to segregate the waste before burning and achieve sufficiently high temperature, holding time and turbulence in the burn chamber. Open burning produces more smoke and pollutants, including dioxins and furans, than does an incinerator capable of achieving complete combustion.
2.3 Burning and Incineration Methods

The burning and incineration method used is a major factor in determining what type of waste can be safely and effectively disposed of. The methods commonly used in Nunavut include open burning on the ground, unmodified burn barrels and various mechanical incineration systems. Other useful methods include the use of burn boxes and modified burn barrels. Each method is discussed separately in the following sections.

2.3.1 Open Burning

Open burning means the burning of waste where limited or no control of the combustion process can be exercised by the operator. This method includes burning solid waste directly on the open ground or in burn boxes or burn barrels and often does not achieve the temperatures or holding time needed for complete combustion of the waste to occur. This results in the formation of potentially hazardous pollutants and ash, which are likely to impact nearby land and water. Food waste that is not completely burned through open burning can also be a powerful attractant for animals.

The various open burning methods can also present a risk of uncontrolled vegetation and tundra fires through the release of hot sparks or embers. The level of fire risk depends upon the type of open burning used, its location, the skill of the operator and the environmental conditions that exist at the time (i.e. dryness of the surrounding vegetation, wind).

The open burning of solid waste remains a common practice in Nunavut. It is the policy of the Department of Environment to eliminate or minimize open burning of mixed solid waste to the extent practicable and to encourage more acceptable methods of disposal and incineration.

Open Burning on the Ground

Open burning on the ground involves burning solid waste that has been piled directly on the surface of the ground or placed in a small open pit. Many large and small communities and camp operators in Nunavut continue to practice open burning on the ground as a means of reducing the volume of solid waste that must ultimately be disposed of. In general, open burning on the ground results in the incomplete combustion of waste and the release of various harmful pollutants to the air, can cause vegetation or tundra fires through the uncontrolled release of hot sparks and embers, and is actively discouraged by the Nunavut Department of Environment as a method for disposing of unsegregated or mixed solid waste.
Burn Boxes

There are two basic types of burn boxes. The *enclosed burn box* is constructed using heavy sheets of steel or other metal while the *open burn box* is constructed using expanded metal grating. The latter type is commonly referred to as a *burn cage*. These devices are not commercially-available in Nunavut, but can be constructed using locally available materials. For example, the enclosed metal burn box shown in Figure 2 is made from a dump truck bed and steel plating.

![Enclosed Metal Burn Box](image)

Figure 2 – Enclosed Metal Burn Box
Photo courtesy of Alaska Department of Environmental Conservation

Burn boxes are considered a modification of open burning. Combustion air is provided passively using a natural draft making electricity unnecessary. Burn boxes are single chambered units. Waste is raised off the bottom of the box by placing it on grates inside the unit. Unburned bottom ash falls through the grate during burning making removal easier once a sufficient amount has accumulated. Combustion air in enclosed burn boxes is typically provided by cutting holes near the bottom of the box allowing for better mixing with the burning waste.

Open burn boxes, or burn cages, are an improvement over enclosed burn boxes as the waste is exposed to natural drafts through the metal grating on all surfaces including the bottom. This enables air to better mix with burning waste and promotes more efficient combustion throughout the burning period. Both types of burn boxes are constructed with hinged tops to enable easier loading and cleaning.

Unlike open burning on the ground, burn boxes help to contain the burning waste within a specific location reducing the risk of fire spreading to other disposal areas or surrounding tundra, while still enabling moderate amounts of solid waste to be burned.

Burn Barrels

There are two basic types of burn barrels – the unmodified burn barrel and modified burn barrel.

![Open Metal Burn Box](image)

Figure 3 – Open Metal Burn Box
Photo courtesy of Alaska Department of Environmental Conservation
The unmodified burn barrel is normally a 45 gallon, or 205 litre, metal fuel or oil drum with the top removed. These devices typically operate at a low temperature resulting in incomplete combustion of the waste and production of large volumes of smoke and fly ash.

A modified burn barrel is a 45 gallon metal fuel or oil drum that has been affixed with devices or features which result in higher burn temperatures, better mixing of the air and a longer holding time. These modifications include a ‘metal mesh basket’ insert or grate designed to suspend the burning waste. Evenly spaced vents or holes cut above the bottom of the barrel supply combustion air. These features provide for enhanced passive under-fire ventilation and promote better contact between the waste being burned and incoming air. The basket insert is topped with a hinged lid and a chimney port for attachment of an exhaust pipe or stack. The lid helps to increase heat retention and holding time inside the barrel while also allowing for easier loading and mixing of the waste. The removable mesh basket enables access to the unburned bottom ash.

Modified burn barrels can be built using commonly available materials. They can either be pre-built locally or transported to the site for assembly. Detailed construction plans are provided in Appendix 2.

Although modified burn barrels are designed to create an advantage over open burning on the ground, burn boxes and unmodified burn barrels through achieving higher burn temperatures and increased turbulence and holding time, incomplete combustion of waste and the release of pollutants to the atmosphere are still likely. In fact, emissions testing by Environment Canada on a modified burn barrel in April 2011 suggest that these devices do not provide any improvement over open burning on the ground in terms of emissions quality, particularly if wet food waste is added to the waste mixture. Other common problems include easily overfilling the unit and loading waste that should not be burned (refer to section 3.2). Wet or frozen masses of waste are particularly difficult to burn and the resulting partly burned food waste may still attract animals. The proper operation of modified burn barrels is critical to achieving the most efficient burn possible. Basic operating instructions are provided in section 4.1.

Burn barrels are capable of burning only small volumes of solid waste. Like burn boxes, they reduce the risk of fire spreading to vegetation and tundra by containing the burning waste to a specific location.

2.3.2 Incineration

Solid waste incinerators are engineered systems that are capable of routinely achieving burn temperatures in excess of 1000°C and a holding time of at least one second. Properly designed and operated incinerators are able to effectively and safely destroy a wide range of waste. Only incinerators designed for burning mixed municipal solid waste are discussed in the guideline. The incineration of
hazardous and biomedical waste and sewage sludge requires specific equipment, operational controls and training that are beyond the scope of the current document.

There are four basic types of incinerators. They vary based upon the number of burn chambers they have, the amount of air provided to each chamber and how waste is fed into the primary burn chamber.

Dual-Chamber Starved Air System

The primary burn chamber receives less air than is needed to achieve full combustion. Gases from this incomplete combustion then pass into a second burn chamber where sufficient air is injected and complete combustion is achieved.

Single Chamber Excess Air System

More than a sufficient amount of air (as much as 50% more than the amount of air needed) is injected into the single burn chamber to achieve complete combustion of the waste.

Continuous Feed Incinerator

An incineration process that is in a continuous burn cycle. A continuous feed incinerator operates without interruption throughout the operating hours of the facility by having waste continually added to the primary burn chamber.

Batch Feed Incinerator

An incineration process that is not in a continuous or mass burning cycle. A batch feed incinerator is charged with a discrete quantity or single load of waste at the beginning of the burn cycle.

Batch feed dual-chamber controlled air incinerators currently operate at several remote industrial locations in northern Canada and Alaska. Although they are generally considered to have the highest qualities of all the incinerators and open burning methods mentioned, they must be designed for the type and quantity of waste to be burned. Too little heat and holding time will not allow waste to burn properly; too much heat will damage the incinerator.

Figure 5 illustrates the design of a typical batch feed dual-chamber controlled air incinerator. The main features of this type of incinerator are:

- Batch operation allows greater control of temperature and air throughout the burn process.
- Air turbulence can be reduced in the primary chamber so fewer particulates are released into the air from the stack.
- Although a wide range of wastes can be destroyed, waste may have to be segregated and remixed in order to achieve a uniform heating value close to the design point of the incinerator.
- Externally supplied fuel and electricity are needed for the burners and forced air ventilation.
- A properly operating dual-chamber controlled air system will reduce problems with animal attraction as the production of bottom and fly ash and smoke is minimized.

Section 2.3.2 is intended to provide the reader with a brief introduction to incinerators. It is not intended to provide information suitable for the design, selection or operation of an incineration system. Any person considering the purchase of an incineration system should first consult the system's manufacturer or other qualified persons with expertise in the incineration of solid waste.
2.4 Environmental Standards

2.4.1 Air Emissions

Air emission standards establish limits on the amount of contaminants that can be released into the atmosphere. These standards are expressed as a concentration in the exhaust gases leaving the stack and are capable of being achieved using generally available incineration technology and waste diversion practices. The following emission standards\(^1\) apply to existing, new or expanding solid waste incinerators operating in Nunavut and have been adopted from the Canadian Council of Ministers of the Environment (CCME) Canada-Wide Standards for Dioxins and Furans and Mercury Emissions, respectively. Similar standards for the open burning of solid waste have not been established.

\(^1\) Stack concentrations are always corrected to 11\% oxygen content for reporting purposes.
Table 1. Air Emission Standards for Solid Waste Incinerators

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Numeric Standard</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dioxins and Furans</td>
<td>80 pg I-TEQ/cubic metre</td>
<td>Unit of measure is picograms of International Toxicity Equivalents per cubic metre of air</td>
</tr>
<tr>
<td>Mercury</td>
<td>20 µg/Rcubic metre</td>
<td>Unit of measure is micrograms per Reference cubic metre (the volume of gas adjusted to 25°C and 101.3 kilopascals)</td>
</tr>
</tbody>
</table>

Opacity is the degree to which the exhaust gases reduce the transmission of light and obscure the view of any object in the background. It is expressed as a percentage representing the extent to which an object viewed through the gases is obscured. Although not an emission standard, opacity provides an indication of the general performance of the incinerator during normal operation. Opacity in the incinerator stack should not exceed 5%. While it is not anticipated that opacity levels would exceed 1% to 2% under normal operation, values greater than 5% indicate the incinerator is not performing properly and additional performance evaluation and adjustment is required.

Figure 6 - Examples of Smoke Opacity Ratings
The opacity ratings are estimates and are provided for illustrative purposes only. Centre and right photos courtesy of GNWT Department of Environment and Natural Resources.

2.4.2 Bottom Ash

The Environmental Guideline for Industrial Waste Discharges into Municipal Solid Waste and Sewage Treatment Facilities establishes criteria for determining whether process residuals are suitable for disposal in landfill sites in Nunavut. For the purpose of this Guideline, process residuals include bottom ash from industrial and commercial incinerators. The Toxicity Characteristic Leaching Procedure Test method 1311 (US EPA) is the preferred method to analyze the residuals as this test is designed to simulate the processes a material would be subjected to if placed in a landfill.

Refer to the Environmental Guideline for Industrial Waste Discharges into Municipal Solid Waste and Sewage Treatment Facilities for additional information on the management of process residuals.

2 The time during which optimum designed temperature is maintained in the burn chamber, and excludes ‘startup’ and ‘cool down’ operations.
3 Process residuals are the solid, semi-solid or sludge waste resulting from industrial operations.
Best Management Practices

Best management practices are methods and techniques that have been shown to be effective in preventing or reducing pollution. They include policies, prohibitions of practices, maintenance and monitoring procedures and other practices adopted by the responsible party. Implementing best management practices together with using best available technology is an effective means of reducing costs, reducing pollution and reducing a parties’ legal liabilities.

3.1 Waste Management Planning

The generator of a waste is responsible for its safe management from cradle-to-grave. Using raw materials efficiently and reducing the amount of waste generated is the most important step in waste management planning. For example, through improved waste management planning, it may be possible to reduce or eliminate the need to burn or incinerate waste altogether. Undertaking a waste audit will help to identify the type and amount of waste being generated, the costs of current management options and examine opportunities for better managing the waste. This information will also enable the generator to implement a waste management regime that is tailored to its own unique needs, location and circumstances.

Even with improved waste reduction measures in place there will be waste generated. Waste by its nature is usually a mixture of different unwanted materials. The segregation and diversion of different types of waste is an effective way to reduce the amount of waste requiring costly handling, storage, treatment and disposal. Segregation also enables the reuse of certain types of waste for a different purpose. Reuse activities may be undertaken either on-site or off-site.

Treatment and disposal is the last step in effective waste management and should be undertaken only after all other practical reduction and reuse options have been examined. A wide variety of treatment and disposal options exist and each must be examined before deciding on a final method, regardless of whether waste is to be treated and disposed of on-site or off-site. If burning and incineration is the method of choice, equipment must be designed and sized accordingly to accommodate the type and quantity of waste being produced. As described in the following section, open burning is capable of safely destroying a limited number of types of waste. While incinerators are capable of safely destroying a wider range of waste, many types of waste must still be diverted. Because of this, on-site segregation remains a critical component of any waste management plan.

Overall, the following principles should be used to guide responsible solid waste management planning:

- Know your waste by conducting a waste audit.
- Reduce the amount of solid waste produced by implementing strategic purchasing policies that focus on the substitution or reduction of purchased products as well as product design, composition and durability.
- Reuse waste where different purposes can be identified.
- Segregate and divert mixed waste streams enabling waste to be reused or recycled, thereby reducing the amount of waste to be disposed of.
- All practical disposal methods should be examined. Burning and incineration of waste should be considered only where other practical methods do not exist.
• If burning and incineration is used, the equipment chosen should be designed and sized to accommodate the waste produced, minimize fire hazard and result in the complete combustion of the waste.

3.2 Wastes That Can be Burned or Incinerated

Complete combustion converts waste into inert bottom ash with minimal creation of smoke, fly ash and hazardous gases. Several factors influence this process including the heating value, wetness and chemical composition of the waste itself, operating conditions in the burn chamber (i.e. temperature, holding time and turbulence) and operator skill.

The method used is important in determining what can safely be burned. Certain wastes can only be incinerated using equipment that has been specifically designed and equipped with sufficient air pollution controls and that achieve specific air emission standards. For example, waste containing chlorinated compounds (i.e. chlorinated solvents and plastics, PVC piping, wood treated with pentachlorophenol or PCB-amended paint, marine driftwood) must be separated from other waste as their burning will result in the de novo creation and emission of various dioxin and furan compounds. Waste containing mercury (i.e. batteries, thermostats and fluorescent light bulbs) and other heavy metals (i.e. lead acid batteries, wood treated with lead paint) should not be burned as the mercury and heavy metals will not be destroyed. Other waste that should not be burned unless using specially designed incinerators include used lubricating oil, hydrocarbon contaminated soil, biomedical waste, sewage sludge or any other waste specifically prohibited by the Department of Environment.

Table 2 provides a listing of common wastes that can be burned and those that require special consideration and treatment. Note that open burning and incineration are identified as separate columns in the table and that different restrictions apply depending upon which method is used. In general, more restrictions apply to the various methods of open burning because of the incomplete combustion achieved. Fewer restrictions apply to incineration because of the operator’s ability to control the combustion process.

Non-combustible materials such as metal and glass do not burn and will rob heat away from waste that can be destroyed by burning. Combustible waste should always be separated from non-combustible waste before being loaded into the burn chamber.

3.3 Keeping Waste Dry

Typical mixed garbage has a moisture content of less than 20% while the moisture content of food wastes can range up to 80%. Anything that can be done to reduce the moisture of waste burned will decrease the amount of smoke produced and increase the completeness of combustion. Waste should be covered or stored inside sheds or other secure buildings to keep rain and snow out of the waste. This will also lessen the opportunity for wildlife to access the waste. If wet waste must be burned, the wet waste should be mixed or layered with dry waste to reduce the overall moisture content of the waste burned. Mixing or layering waste in this manner is particularly important when loading wet solid waste into a burn box or modified burn barrel.
Table 2. Waste That Can be Burned or Incinerated

<table>
<thead>
<tr>
<th>Waste Type</th>
<th>Open Burning</th>
<th>Dual-Chamber Incinerator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper products</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Paperboard packing including boxboard and cardboard</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Untreated wood including lumber and plywood</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Food waste</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Food packaging</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Natural fiber textiles</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Plastic and Styrofoam except plastic containing chlorine</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Painted wood except wood painted with lead or PCB-amended paint</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Wood treated with creosote or tar oil</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Hydrocarbon spill absorbents</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Animal carcasses except those affected by disease-causing agents</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

The following waste requires special consideration. It is not to be burned or incinerated unless the equipment used has sufficient air pollution controls, meets specific air emission standards and has been specifically designed to safely incinerate the waste product.

- Hydrocarbon contaminated soil
- Radioactive waste including smoke detectors
- Organic compounds containing chlorine including plastics, solvents, PVC piping and marine driftwood
- Pesticides
- Items containing mercury, lead or other heavy metals including paint, computer equipment and fluorescent bulbs
- Batteries
- Explosives
- Pressurized cans, cylinders or other containers that may explode when heated
- Synthetic fiber textiles
- Biomedical waste and animal carcasses affected by disease-causing agents
- Wood treated with pentachlorophenol, inorganic preservatives, lead paint or PCB-amended paint
- Sewage sludge
- Rubber tires
- Used lubricating oil
- Waste fuel except limited quantities used solely as a starting fuel
- Construction and demolition waste including roofing materials, electrical wire and insulation

3.4 Locating the Facility

Distance from sensitive areas (i.e. camp, work site, drinking water supply) and prevailing wind direction are important factors to consider when locating any facility that burns waste. The facility should be kept

4 Includes open burning on the ground and the use of burn boxes, unmodified burn barrels and modified burn barrels.

5 Chlorinated plastic materials are identified by the number “3” associated with the mobius loop symbol.
Guideline for the Burning and Incineration of Solid Waste

at least 100 metres from any surface water body. Although the objective is to minimize pollutants being released to the air, the site should be selected so that any resulting emissions are adequately dispersed. This includes locating the structure or facility away from areas or features that may trap smoke close to the ground (i.e. located in a valley). Avoid burning waste if people will be living or working within the plume of smoke. The facility should be located on stable and level ground. A gravel, rocky outcrop or other area free of combustible materials and vegetation should be chosen to avoid accidently starting a vegetation or tundra fire.

3.5 Maximizing Combustion Efficiency

More smoke and other pollutants are released into the air during the ‘start-up’ and ‘cool down’ phases of the burn cycle than during the ‘full burn phase’ when high temperatures are maintained. Low temperature smoldering fires should be avoided. Burn only dry feedstock and periodically add additional waste to the fire in order to maintain high burn temperatures until all waste has been destroyed. If waste is to be open burned on the ground, the use of deep or steep-walled ‘pits’ should be avoided as this will prevent the necessary turbulent mixing of oxygen with the burnable gases.

Desired operating temperature should be achieved as quickly as possible when operating any burning or incineration device. A rapid ‘start-up’ can be achieved by first loosely loading dry paper, paperboard packing and untreated wood into the bottom of the device. Dry, loosely loaded material will ignite more quickly and burn more evenly than a wet, tightly packed load. Wet waste should only be added after the fire is actively burning. Overfilling the burn chamber will prevent the turbulent mixing of burnable gases and oxygen, and should be avoided.

Modern batch feed incinerators are designed with primary and auxiliary burners to achieve and maintain the necessary high burn temperatures. Additional waste should only be added to these incinerators once the ‘cool down’ phase has been completed and it is safe to do so.

3.6 Ash Management

The management of bottom ash and other unburned residue is an integral part of sound waste management and the ash will need to be disposed of. Extreme care must be exercised when handling ash because of its physical (i.e. glass, nails) and chemical hazards. Use closed or covered containers when moving or transporting bottom ash from the burning device or incinerator to the approved disposal site. This will minimize physical contact with the ash and the release of fine ash particles to the environment.

Avoid handling bottom ash until it is completely cool. Hot ash and embers can cause painful skin burns and should never be buried or landfilled as they could cause unburned waste in the disposal area to catch fire.

Bottom ash from the open burning of paper, paperboard packing, untreated wood waste and natural fiber textiles is suitable for burial in a designated pit or municipal landfill. Because incinerators can be used to destroy a wide variety of waste and the subsequent ash may contain a wide variety of toxic residues, bottom ash from an incinerator is suitable for burial only where it meets the criteria set out in Table 1 of the Environmental Guideline for Industrial Waste Discharges into Municipal Solid Waste and Sewage Treatment Facilities. Waste originating from outside a municipality and meeting the criteria may be deposited in municipal landfills only with the consent of the local government. Any bottom ash
not meeting the criteria set out in the *Environmental Guideline for Industrial Waste Discharges into Municipal Solid Waste and Sewage Treatment Facilities* is considered to be a hazardous waste. This ash is not suitable for landfilling and its management must comply with the *Environmental Guideline for the General Management of Hazardous Waste*.

3.7 Monitoring and Record Keeping

Burn boxes, burn barrels and incinerators should be inspected for signs of damage, corrosion or other physical defects before each burn cycle. Repairs must be completed before the equipment is used again to ensure the health and safety of the operator, nearby people and the environment.

The various open burning methods tend to produce large quantities of smoke. Burning dry waste, high burn temperatures and sufficient air mixing with the burnable gases will reduce, but not eliminate, the amount of smoke and other pollutants that are generated. Large quantities of dark smoke indicate problems and inefficiencies with the combustion process and the generation of pollutants. Keep records of when, how much and what waste was burned, how the waste was loaded into the burning device or incinerator, the amount of smoke and bottom ash generated, how the fire was started and any other information that would help remind the operator of what worked well, and what didn’t. These records would also assist the operator, Department of Environment and other regulatory agencies if complaints of nuisance smoke were to be received.

The operation of incinerators should be monitored using on-line instruments capable of continuously measuring the combustion process and stack emissions. The most basic measurement associated with the combustion process is temperature in both the primary and secondary burn chambers. Temperature readings outside of the normal range can warn the operator that the system is not working properly. In-stack monitoring provides the operator with additional information on the combustion process and on pollutants that may be released to the environment. A continuous opacity or particulate monitor should be installed in the incinerator stack to monitor emissions quantity. Additional combustion chamber and in-stack sampling and monitoring may be required depending upon the type and quantity of waste being incinerated. Each process and in-stack monitor should be equipped with visible and audible alarms to warn operators of poor incinerator operation. Refer to section 4.2 for additional information on incinerator monitoring requirements.

Written records should be kept by incinerator operators of what waste is burned, when and how much. Other record keeping requirements for incinerators may include:

- Operating data including readings from the process and emissions monitoring instruments.
- Weather conditions (i.e. air temperature and wind speed) at the time the incinerator is being operated.
- Repairs and maintenance performed on the incinerator and monitoring instruments.
- Major changes in operation.
- Quantity, condition and disposal location of the collected bottom ash.
- Operator training.

Records should be maintained on-site throughout the operational life of the facility and be made available to Inspectors and other regulatory officials upon request.
3.8 Operator Training

The cornerstone of ensuring proper and safe operation of any equipment is adequate operator training. Facility owners must ensure qualified operators are available and have been properly trained to operate the equipment under both normal and emergency conditions. This will help to ensure the continued operation and maintenance of the equipment and facility, protection of the environment and the continued health and safety of the operator and nearby people. In particular, operators of incinerators should be trained in the following areas:

- Physical and mechanical features of the equipment and facility.
- Operation and trouble-shooting procedures.
- Environmental and safety concerns related to operation of the facility.
- Spill and fire emergency response procedures.
- Emergency and accident reporting procedures including use of the NWT/Nunavut 24-Hour Spill Report Line at (867) 920-8130.

Every incinerator manufacturer has its own approach to designing and building incinerators. Operators should be qualified and trained to safely operate the specific make and model of incinerator they are expected to operate.
The Application of Open Burning and Incineration

The Department of Environment does not promote or endorse the burning and incineration of solid waste. This method of waste management should be implemented only after the owner or operator has made all reasonable and determined efforts to implement sound waste management planning and practices. Opportunities to reduce or eliminate the need for burning and incineration through changes in purchasing practices, reuse, recycling, segregation and diversion, and other changes or emission control upgrades that would result in emission reductions, must be reviewed periodically and implemented where practical. Refer to section 3 for additional information on best management practices.

This section provides guidance on the application of open burning and incineration of solid waste. In addition to the guidance and direction provided through the Guideline, the burning and incineration of solid waste may also be controlled through permits and licenses issued by Nunavut’s co-management boards, Aboriginal Affairs and Northern Development Canada and other regulatory agencies. These permits and licenses must be complied with at all times.

4.1 Open Burning

Open burning is the burning of solid waste where limited or no control over the combustion process can be exercised by the operator. For the purposes of the Guideline, open burning includes burning waste that has been piled on the surface of the ground or placed in small open pits, or the use of a burn box, unmodified burn barrel or modified burn barrel. Open burning does not include the destruction of waste using a commercial or manufactured incinerator.

The open burning of unsegregated, or mixed, solid waste must not occur under any circumstances. Today's household, institutional, commercial and industrial garbage contains many materials which, when burned at low temperature, can result in the release of high levels of particulates, acid gases, heavy metals, carbon monoxide, dioxins, furans and other chemicals, some of which may cause cancer. The only solid wastes that may be disposed of through open burning are paper products, paperboard packing, untreated wood waste and natural fiber textiles (i.e. cotton, wool). Refer to section 3.2 for further information on what waste can and cannot be burned.

The open burning of solid waste remains a hazardous practice from a fire prevention and environmental management perspective. Open burning on the ground should not take place within a municipality without first obtaining authority to do so from the local community government. It should never occur at a municipal or industrial landfill because of the proximity of other combustible wastes within the working landfill. Where permission has been obtained and paper, paperboard packing, untreated wood waste and natural fiber textiles are open burned on the ground or in a small open pit, the activity must be attended and carefully monitored by a responsible adult at all times.

The preferred alternative to open burning on the ground is the use of an enclosed burn box or burn cage. These devices should be used when burning a moderate to large quantity of paper, paperboard packing, untreated wood waste and natural fiber textiles. They are designed to contain the waste while it is burning and reduce the likelihood of sparks or burning embers igniting adjacent vegetation and other combustible materials. When using a burn box or cage at a municipal or industrial landfill, extreme caution must be taken to ensure other areas of the working landfill are not ignited. Their
Guideline for the Burning and Incineration of Solid Waste

proper operation includes loading the device with dry waste to about half its capacity before igniting the fire. Additional or wet waste can be added in small batches so as not to dampen the fire once the fire has developed into a good flame and it is safe to do so.

The following general conditions should be met whenever open burning on the ground or burning using an enclosed burn box or burn cage takes place:

- Only paper, paperboard packing, untreated wood waste and natural fiber textiles are burned.
- The waste is burned in a controlled manner and at a site which is separate from combustible vegetation and other materials.
- Burning takes place only on days when winds are light and blowing away from people.
- Waste is burned in manageable volumes so the fire does not get out of control.
- The fire is started, attended and monitored at all times by authorized and qualified personnel.
- The waste is kept dry or covered to the extent practicable prior to burning.
- Where applicable, authority is first obtained from the municipality or other regulatory agencies.

Modified or unmodified burn barrels should only be used to burn small quantities of paper, paperboard packing, untreated wood waste and natural fiber textiles at remote locations such as traditional camps and field camps. Food and food packaging waste, which make up a significant portion of kitchen garbage produced at these camps, should not be burned. These wastes should be segregated daily and stored in wildlife-proof containers for frequent removal to an approved disposal site.

It is important that burn barrels are properly constructed and operated to ensure safety of the operator and the environment. Appendix 2 provides detailed construction drawings for a modified burn barrel. The Department of Environment will consider other designs if they provide an equivalent level of environmental protection.

Below are some easy-to-do actions to ensure unmodified and modified burn barrels are operated safely and waste is burned to the greatest extent possible.

When locating and constructing a burn barrel:

- Locate the burn barrel in a place predominantly downwind of the camp site or burn only on days when the wind is light and blowing away from the camp.
- Ensure the burn barrel is located on gravel, rocky outcrop or other area free of combustible materials and vegetation to avoid accidentally starting a tundra fire.
- Ensure the detailed plans provided in Appendix 2 are carefully followed when constructing a modified burn barrel. The ‘exhaust gas to combustion air’ ratio is particularly important to achieving the maximum burn rate. A 2:1 ratio of exhaust stack to air intake area consisting of a 6-inch exhaust port and three 2-inch air intake holes positioned equidistantly around the bottom of the barrel a few inches up from the base is preferred.

6 Testing of a modified burn barrel was performed by Environment Canada’s Air Quality Research Division in April 2011 at the request of Nunavut’s Department of Environment. Ten trial burns were completed prior to emissions testing in order to optimize and standardize barrel design and operational procedures. Following the trial burns, four test runs were performed and air emission samples collected for analysis. Results of the emission testing program will be available from Nunavut’s Department of Environment. This list of recommended practices reflects the operational observations and measurements made during the testing program.
When operating a burn barrel:

- Inspect the barrel for any signs of leakage, corrosion or other physical defects before each burn cycle. Any necessary repairs must be completed before the equipment is used.
- Burn only dry waste. If wet waste must be burned, mix or batch the waste with other waste that has a low moisture content and high heating value (i.e. dry wood). This will help ensure the slow-burning wet waste is completely burned.
- Burn only paper, paperboard packing, untreated wood waste and natural fiber textiles. Food and food packaging waste should not be burned. Burning non-combustible waste (i.e. metal and glass) will rob the fire of valuable heat and should also be avoided. Food and food packaging, non-combustible and other waste that cannot be burned should be segregated and removed from the site for disposal on a regular basis.
- Do not overfill or densely pack waste into the burn barrel as air will be prevented from properly mixing with the waste. This will result in a smouldering, low temperature burn and smoke.
- Layering wet or slow burning waste with dry fast burning waste will help ensure more complete combustion of all waste.
- The burn barrel should not be used unless a responsible adult is available to monitor and watch over it until the fire has completely cooled.
- When using a modified burn barrel, the exhaust port on the ‘metal basket insert’ should be aligned between two of the 2-inch air intake holes in order to avoid short-circuiting of the combustion air directly through to the stack. Also, the spark arrest screen should be cleaned following each burn to ensure the stack does not become blocked with soot and other debris. If the barrel lid begins to ‘puff’ during a burn, inspect the screen to ensure it is not obstructing the flow of exhaust gases.

Care must be taken by the operator at all times to avoid skin contact with hot surfaces and avoid breathing smoke and other exhaust gases.

Written records of open burning should be kept by the operator. These record what was burned, when and how much, how waste was loaded into the device, how the fire was started, its location, weather conditions at the time and any other information that may help remind the operator of what worked well, and what didn’t. These records are to be made available for review upon request by an Inspector.

Bottom ash from the open burning of paper, paperboard packing, untreated wood waste and natural fiber textiles is suitable for burial in a designated pit or municipal landfill site. Consent to use a municipal landfill should first be obtained from the local government. Bottom ash must be completely cooled before it can be safely handled and disposed of. Refer to section 3.6 for further information.

4.2 Incineration

Incinerators differ from the simpler methods of open burning as the operator has a higher degree of control over the burning process. The resulting higher temperatures, longer holding times and greater turbulence lead to more complete combustion of the waste. Although a wider range of wastes can be destroyed using high temperature single or dual-chambered incinerators, determined efforts should still be taken to reduce the quantity and type of waste generated and to implement other changes which would result in reductions in air emissions. Refer to section 3 for further information proper waste management practices and a listing of what waste can and cannot be incinerated.
The incinerator manufacturer’s operating instructions must be followed at all times to ensure designed temperature, holding time and turbulence conditions are achieved and to avoid damage to the facility. When operating during winter months, additional care must be taken because cold air introduced into the primary and secondary chambers may make it difficult for normal operating temperatures to be achieved. Operators must be properly trained and qualified to operate the equipment under both normal and emergency conditions. Owners are strongly encouraged to consult system manufacturers or other qualified persons with expertise before purchasing an incinerator. Additional guidance on the selection of incinerator technologies and their operational requirements can be obtained by referring to Environment Canada’s Technical Document for Batch Waste Incineration.

The installation and operation of monitoring and control systems is critical for the proper and safe operation of any incinerator. The design, installation, certification and operation of continuous emissions monitoring systems (CEMS) should comply with the principles described in Environment Canada’s Protocols and Performance Specifications for Continuous Monitoring of Gaseous Emissions from Thermal Power Generation. While the document is written for power generation facilities, the principles apply equally well to other types of facilities and continuous emissions monitoring systems. For incinerators operating in Nunavut, key operational parameters must be monitored at all times using on-line instruments capable of continuously measuring the combustion process and stack emissions quality. These instruments should be equipped with visible and audible alarms and be on-line whenever the incinerator is in operation, including ‘start-up’ and ‘cool down’ phases. Table 3 lists the monitoring and control system requirements.

Table 3. Incinerator Monitoring and Control System Requirements

<table>
<thead>
<tr>
<th>System Description</th>
<th>Quantity of Waste to be Burned</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Less than 26 Tonnes per Year</td>
</tr>
<tr>
<td>Weight and composition of feedstock waste on a batch basis</td>
<td>✔</td>
</tr>
<tr>
<td>Temperature in the primary and secondary combustion chambers</td>
<td>✔</td>
</tr>
<tr>
<td>Opacity in the stack</td>
<td>✔</td>
</tr>
<tr>
<td>Initial Certificate of Operation</td>
<td>✔</td>
</tr>
</tbody>
</table>

While not a specific requirement of the Guideline, additional one-time or continuous emissions monitoring may be required depending upon the type and quantity of waste to be incinerated. Examples include monitoring oxygen and carbon monoxide in the undiluted gases exiting the combustion chamber, such as a secondary chamber of a conventional dual-stage incinerator. Annual or periodic stack sampling for hydrogen chloride, dioxins and furans may also be required where the feedstock includes a significant quantity of organic materials that contain chlorine (i.e. chlorinated solvents and plastics, PVC piping, marine driftwood). The reader is encouraged to contact Nunavut’s Department of Environment for guidance on additional emissions monitoring requirements.

7 The CCME Canada-Wide Standard for Dioxins and Furans Emissions from Waste Incinerators and Coastal Pulp and Paper Boilers (2001) established a criterion of 26 tonnes per year to distinguish between a ‘small facility’ and ‘large facility’ incinerator.
8 An acceptable alternative to monitoring opacity is to continuously monitor particulate matter in the stack.
9 An initial Certificate of Operation includes satisfactory confirmation based on manufacturers’ or third-party testing and certification that the unit is capable of complying with the requirements contained in the Guideline when operated in accordance with the manufacturer’s recommendations and with minimal requirement for operator attention. The Certificate is to be provided to the Nunavut Department of Environment before the incinerator is placed into routine operational service.
Monitoring and control data should be recorded each time a burn cycle is completed. Records are to be maintained for the operational life of the incinerator and made available for review upon request by an Inspector. Refer to section 3.7 for additional information on monitoring and record keeping.

Bottom ash and other solid residue collected from the incinerator is suitable for burial where it meets the criteria set out in Table 1 of the *Environmental Guideline for Industrial Waste Discharges into Municipal Solid Waste and Sewage Treatment Facilities* or in accordance with land use permits and water licenses issued by Nunavut’s co-management boards and Aboriginal Affairs and Northern Development Canada. Where bottom ash meets the criteria and is to be disposed of into a municipal landfill, the quantity transported off-site must be recorded and the consent of the local municipal government first be obtained. Bottom ash not meeting the criteria set out in the *Environmental Guideline for Industrial Waste Discharges into Municipal Solid Waste and Sewage Treatment Facilities* is considered to be a hazardous waste and must be managed in accordance with the *Environmental Guideline for the General Management of Hazardous Waste*.
Conclusion

This is a general introduction to the practice of burning and incinerating solid waste. It is not intended to promote or endorse the practice but to provide the reader with information on the risks, hazards and best management practices associated with this activity. It also provides specific guidance on the application of burning and incinerating solid waste should this practice be undertaken by municipalities and operators of traditional, field and commercial camps.

Familiarity with the Guideline does not replace the need for the owner or person in charge, management or control of the solid waste to comply with all applicable federal and territorial legislation and municipal by-laws. The burning and incineration of solid waste may be controlled through permits and licenses issued by Nunavut’s co-management boards, Aboriginal Affairs and Northern Development Canada and other regulatory agencies. These permits and licenses must be complied with at all times.

For additional information on the management of solid waste, or to obtain a complete listing of available guidelines, contact the Department of Environment at:

Environmental Protection Division
Department of Environment
Government of Nunavut
Inuksugait Plaza, Box 1000, Station 1360
Iqaluit, Nunavut, X0A 0H0

Phone: (867) 975-7729
Fax: (867) 975-7739

Email: EnvironmentalProtection@gov.nu.ca
Website: http://env.gov.nu.ca/programareas/environmentprotection
References

http://www.ccme.ca/assets/pdf/d_and_f_standard_e.pdf

http://www.ccme.ca/assets/pdf/mercury_emis Std_e1.pdf

http://www.ccme.ca/assets/pdf/pn_1076_e.pdf

http://www.ccme.ca/assets/pdf/pn_1085_e.pdf

http://www.ccme.ca/assets/pdf/pn_1227_e.pdf

http://www.ec.gc.ca/Publications/844D7CF3-2F1D-4CA0-9290-0A885806F792/ProtocolsandPerformanceSpecs.pdf

http://env.gov.nu.ca/node/82#Guideline Documents

http://env.gov.nu.ca/node/82#Guideline Documents
APPENDICES
APPENDIX 1 - ENVIRONMENTAL PROTECTION ACT

The following are excerpts from the Environmental Protection Act

1. "Contaminant" means any noise, heat, vibration or substance and includes such other substance as the Minister may prescribe that, where discharged into the environment,
 (a) endangers the health, safety or welfare of persons,
 (b) interferes or is likely to interfere with normal enjoyment of life or property,
 (c) endangers the health of animal life, or
 (d) causes or is likely to cause damage to plant life or to property;

"Discharge" includes, but not so as to limit the meaning, any pumping, pouring, throwing, dumping, emitting, burning, spraying, spreading, leaking, spilling, or escaping;

"Environment" means the components of the Earth and includes
 (a) air, land and water,
 (b) all layers of the atmosphere,
 (c) all organic and inorganic matter and living organisms, and
 (d) the interacting natural systems that include components referred to in paragraphs (a) to (c).

"Inspector" means a person appointed under subsection 3(2) and includes the Chief Environmental Protection Officer.

2. The Minister may
 (a) establish, operate and maintain stations to monitor the quality of the environment in the Territories;
 (b) conduct research studies, conferences and training programs relating to contaminants and to the preservation, protection or enhancement of the environment;
 (c) develop, co-ordinate and administer policies, standards, guidelines and codes of practice relating to the preservation, protection or enhancement of the environment;
 (d) collect, publish and distribute information relating to contaminants and to the preservation, protection or enhancement of the environment:

3. (1) The Minister shall appoint a Chief Environmental Protection Officer who shall administer and enforce this Act and the regulations.

 (2) The Chief Environmental Protection Officer may appoint inspectors and shall specify in the appointment the powers that may be exercised and the duties that may be performed by the inspector under this Act and regulations.

5. (1) Subject to subsection (3), no person shall discharge or permit the discharge of a contaminant into the environment.

 (3) Subsection (1) does not apply where the person who discharged the contaminant or permitted the discharge of the contaminant establishes that
 (a) the discharge is authorized by this Act or the regulations or by an order issued under this Act or the regulations;
 (b) the contaminant has been used solely for domestic purposes and was discharged from within a dwelling house;
 (c) the contaminant was discharged from the exhaust system of a vehicle;
(d) the discharge of the contaminant resulted from the burning of leaves, foliage, wood, crops or stubble for domestic or agricultural purposes;
(e) the discharge of the contaminant resulted from burning for land clearing or land grading;
(f) the discharge of the contaminant resulted from a fire set by a public official for habitat management of silviculture purposes;
(g) the contaminant was discharged for the purposes of combating a forest fire;
(h) the contaminant is a soil particle or grit discharged in the course of agriculture or horticulture; or
(i) the contaminant is a pesticide classified and labelled as "domestic" under the Pest Control Products Regulations (Canada).

(4) The exceptions set out in subsection (3) do not apply where a person discharges a contaminant that the inspector has reasonable grounds to believe is not usually associated with a discharge from the excepted activity.

5.1. Where a discharge of a contaminant into the environment in contravention of this Act or the regulations or the provisions of a permit or license issued under this Act or the regulations occurs or a reasonable likelihood of such a discharge exists, every person causing or contributing to the discharge or increasing the likelihood of such a discharge, and the owner or the person in charge, management or control of the contaminant before its discharge or likely discharge, shall immediately:
(a) subject to any regulations, report the discharge or likely discharge to the person or office designated by the regulations;
(b) take all reasonable measures consistent with public safety to stop the discharge, repair any damage caused by the discharge and prevent or eliminate any danger to life, health, property or the environment that results or may be reasonably expected to result from the discharge or likely discharge; and
(c) make a reasonable effort to notify every member of the public who may be adversely affected by the discharge or likely discharge.

6. (1) Where an inspector believes on reasonable grounds that a discharge of a contaminant in contravention of this Act or the regulations or a provision of a permit or license issued under this Act or the regulations has occurred or is occurring, the inspector may issue an order requiring any person causing or contributing to the discharge or the owner or the person in charge, management or control of the contaminant to stop the discharge by the date named in the order.

7. (1) Notwithstanding section 6, where a person discharges or permits the discharge of a contaminant into the environment, an inspector may order that person to repair or remedy any injury or damage to the environment that results from the discharge.

(2) Where a person fails or neglects to repair or remedy any injury or damage to the environment in accordance with an order made under subsection (1) or where immediate remedial measures are required to protect the environment, the Chief Environmental Protection Officer may cause to be carried out the measures that he or she considers necessary to repair or remedy an injury or damage to the environment that results from any discharge.
APPENDIX 2 – MODIFIED BURN BARREL DESIGN AND SPECIFICATIONS

A modified burn barrel is typically constructed from a 45 gallon metal fuel or oil drum. The modifications result in greater heat generation and retention, better mixing of the waste with incoming air and longer holding time inside the barrel. Together, these modifications result in more complete combustion of the solid waste than does open burning on the ground or in a pit.

Placing a metal screen over the top of the exhaust pipe may be required to prevent sparks and hot ash from escaping. Care should be taken to ensure the screen does not become blocked with soot.

A hinged top helps to capture heat and enables easy loading and mixing of waste.

A stove pipe attached to the top of the barrel allows smoke to escape and creates an effective draft.

Evenly spaced vents or holes cut above the bottom of the barrel enable fresh air to mix with waste inside the metal basket.

A metal basket or grate suspends the burning waste and enables mixing with the incoming air. The removable basket also enables access to any unburned ash that may collect in the bottom of the barrel.
Guideline for the Burning and Incineration of Solid Waste
Guideline for the Burning and Incineration of Solid Waste