ABUNDANCE ESTIMATES FOR FIVE POLAR BEAR POPULATIONS: A COMPARISON BETWEEN ESTIMATES DERIVED FROM PRELIMINARY AND EXTENSIVE DATA SETS

Elizabeth Peacock ${ }^{1}$
Mitchell K. Taylor ${ }^{1}$
Markus G. Dyck ${ }^{1}$

[^0]Peacock, E., M. K Taylor and M. G. Dyck. 2007. Abundance Estimates for Five Polar Bear Populations: A Comparison between Estimates Derived from Preliminary and Extensive Data Sets. Government of Nunavut, Department of Environment, Status report: 27, Iqaluit, 11 pp.

Abundance Estimates for Five Polar Bear Populations: A Comparison between Estimates Derived from Preliminary and Extensive Data Sets

Elizabeth Peacock
Wildlife Research Group, Department of Environment
Government of Nunavut
Box 209
Igloolik, Nunavut, Canada XOA-OLO

Mitchell K. Taylor
Wildlife Research Group, Department of Environment
Government of Nunavut
Box 209
Igloolik, Nunavut, Canada XOA-OLO

Markus G. Dyck
Wildlife Research Group, Department of Environment
Government of Nunavut
Box 209
Igloolik, Nunavut, Canada XOA-OLO

Keywords: abundance, Baffin Bay, bias, Davis Strait, Gulf of Boothia, Lincoln-Petersen Mark-recapture, M'Clintock Channel, polar bear, Ursus maritimus, Viscount Melville

The estimation of polar bear (Ursus maritimus) population abundance is essential for wildlife managers to assess conservation status and whether harvest is sustainable. With the added uncertainty of the impacts of climate warming on polar bear populations (Stirling and Parkinson 2006), it is critical to produce accurate, precise and timely abundance estimates. Providing accurate estimates for the world's 19 polar bear populations (Aars et al. 2005) is difficult and expensive. Multi-year mark-recapture (M-R) using physical capture is the method generally accepted to produce the most accurate and precise estimates of polar bear abundance (e.g., Derocher and Stirling 1995); however such studies in many regions are cost prohibitive. Abundance estimators using only two years of M-R effort (Lincoln-Petersen, L-P [Chapman 1951]; Manly-Parr, M-P [Manly and Parr 1968]) assume geographic and demographic closure and cannot generally incorporate co-variates and capture heterogeneity, resulting in biases of the population estimates. Manly et al. (2003) incorporated age information into an M-P analysis of simulated two-year data sets, thereby extending a closed model to incorporate a proxy for annual survival; yet gathering age information is not trivial for large data sets in terms of cost and personnel. Here we examine the bias of L-P-based abundance estimates of four polar bear populations (Baffin Bay, Gulf of Boothia, M'Clintock Channel and Viscount Melville, Figure 1) with respect to the estimates produced from analyses of extensive multi-year data sets using open estimators (McDonald and Amstrup 2001). These latter estimators incorporate age, sex and time specific survival, and recapture and recovery (i.e., harvest) probabilities. We develop a simple empirical relationship between the two types of abundance estimates. Our second objective is to apply this empirical relationship to provide an estimate of a fifth population of polar bears, the Davis Strait population (Figure 1), for which only two years
of current M-R data (without age information) exist. The abundance of the Davis Strait population has not been assessed since the 1970s (Stirling et al. 1980; Stirling and Killian 1980).

We use existing M-R data from Gulf of Boothia (Taylor et al. 2006b), M'Clintock Channel (Taylor et al. 2006a), Baffin Bay (McLoughlin et al. 2005) and Viscount Melville (Taylor et al. 2002) to generate L-P population estimates from two years of the M-R efforts. For each population, we provide abundance estimates for the year of marking based on the L-P model, which follows the Chapman (1951) correction, with several adjustments. First, we reduce capture heterogeneity with respect to sex (females have lower capture probability), by summing separate L-P estimates of male and female polar bears (and summing the variance). In a similar approach to Derocher and Stirling (1995) and Lunn et al. (1997), we project rather than estimate (Appendix I), the number of cubs-of-the-year (COY) and yearlings to reduce effects of capture heterogeneity among ageclasses (Table 1). We then compare the L-P abundance estimates to the Burnham CJS estimates for the same year (Taylor et al. 2002; Taylor et al. 2005; Taylor et al. 2006a; b).

A pair-wise statistical comparison between the two types of estimates is trivial because the L-P should be smaller, as a Burnham CJS model can incorporate heterogeneity in capture probabilities to a greater extent than our adjusted L-P estimator. A positive bias may exist if there is immigration of unmarked individuals or if marked animals died disproportionately higher than unmarked individuals (Kendall 1999); however, assuming no behavioral bias with respect to the mark, the L-P estimate for the year of marking is unbiased with respect to survival. A correlation comparison of our adjusted L-P estimates to the more complex abundance estimates suggests a
relatively constant and minor differential that is not influenced by the magnitude of the estimate ($r=0.99, \mathrm{y}=1.052 \mathrm{x}-2.95$).

To address our second objective, we derive an adjusted L-P estimate using the two years of M-R data collected in Davis Strait during the open-water seasons in 2005 and 2006 (Table 1). M-R data in Davis Strait were collected as for the other four populations (Taylor et al. 2002; Taylor et al. 2005; Taylor et al. 2006a; b), applying permanent marks (lip tattoos) using helicopter-based chemical immobilization and uniform area coverage; all polar bears encountered that can be caught safely are captured without regard to sex or age class. Recapture probability in Davis Strait in the second year (0.26) is higher than in Baffin Bay, M'Clintock Channel, and Gulf of Boothia, where recapture probability is $0.12,0.12$ and 0.10 respectively; recapture rate in Viscount Melville is similar, 0.25 . The L-P abundance estimate for the Davis Strait polar bears is 2380 ± 186 (SE). Using the relationship between the L-P and the CJS estimates, the extrapolated number of bears in the Davis Strait region in 2005 was 2500 (Figure 2).

Here we provide a current abundance estimate for the Davis Strait polar bear population. The previous estimate (approximately 770 bears) from the late 1970s represented estimates summed from two portions of the Davis Strait population (Stirling et al. 1980; Stirling and Killian 1980), and were likely biased low due to capture methods. We conclude that our extrapolated two year mark-recapture study is sufficient to produce a working interim abundance estimate, given our comparative exercise. However, a minimum of three years of mark-recapture data are essential to estimate annual survival. Importantly, an estimate of survival will allow us to assess population growth and therefore, whether a continued harvest is sustainable.

Literature Cited
AARS, J., N.J. LUNN and A.E. DEROCHER. 2005. Polar Bears 14th Working Meeting of the IUCN/SSC Polar Bear Specialist Group, Seattle, Washington, USA.

CHAPMAN, D.G. 1951. Some properties of the hypergeometric distribution with applications to zoological sample censuses. University of California Publication in Statistics 1:131-160.

DEROCHER, A.E. and I. STIRLING. 1995. Estimation of Polar Bear Population-Size and Survival in Western Hudson-Bay. Journal of Wildlife Management 59:215-221.

KENDALL, W.L. 1999. Robustness of closed capture-recapture methods to violations of the closure assumption. Ecology 80:2517-2525.

LAW, A.M. and W.D. KELTON. 1991. Simulation Modeling and Analysis. McGraw-Hill. $2^{\text {nd }}$ ed.

LUNN, N.J., I. STIRLING, D. ANDRIASHEK and G.B. KOLENOSKY. 1997. Reestimating the size of the polar bear population in Western Hudson Bay. Arctic 50:234240.

MANLY, B.F.J., T.L. MCDONALD, S.C. AMSTRUP and E.V. REGEHR. 2003. Improving size estimates of open animal populations by incorporating information on age. BioScience 53:666-669.

MANLY, B.F.J. and M.J. PARR. 1968. A new method of estimating population size, survivorship, and birth rate from capture-recapture data. . Transactions of the Society for British Entomology 18:81-89.

MCDONALD, T.L. and S.C. AMSTRUP. 2001. Estimation of population size using open capture-recapture models. Journal of Agricultural, Biological, and Environmental Statistics 6:206-220.

MCLOUGHLIN, P.D., M.K. TAYLOR and F. MESSIER. 2005. Conservation risks of male-selective harvest for mammals with low reproductive potential. Journal of Wildlife Management 69:1592-1600.

STIRLING, I., W. CALVERT and D. ANDRIASHEK. 1980. Population ecology studies of the polar bear in the area of southeastern Baffin Island. Canadian Wildlife Service Occasional Paper 44. 31 pp.

STIRLING, I. and H.P.L. KILLIAN. 1980. Population ecology studies of the polar bear in northern Labrador. Canadian Wildlife Service Occasional Paper 42. 19 pp.

STIRLING, I. and C.L. PARKINSON. 2006. Possible effects of climate warming on selected populations of polar bears (Ursus maritimus) in the Canadian Arctic. Arctic 59:261-275.

TAYLOR, M.K., J. LAAKE, H.D. CLUFF, M. RAMSAY and F. MESSIER. 2002. Managing the risk from hunting for the Viscount Melville Sound polar bear population. Ursus 13:185-202.

TAYLOR, M.K., J. LAAKE, P.D. MCLOUGHLIN, E.W. BORN, H.D. CLUFF, S.H. FERGUSON, A. ROSING-ASVID, R. SCHWEINSBURG and F. MESSIER. 2005. Demography and viability of a hunted population of polar bears. Arctic 58:203-214.

TAYLOR, M.K., J. LAAKE, P.D. MCLOUGHLIN, H.D. CLUFF and F. MESSIER. 2006a. Demographic parameters and harvest-explicit population viability analysis for polar bears in M'Clintock Channel, Nunavut, Canada. Journal of Wildlife Management 70:1667-1673.

TAYLOR, M.K., J. LAAKE, P.D. MCLOUGHLIN, H.D. CLUFF and F. MESSIER. 2006b. Demography and population viability of polar bears in the Gulf of Boothia, Nunavut. Department of Environment, Final Report, Government of Nunavut, Iqaluit, NU. 29 pp. Strait population in 2005 and 2006.

	Number caught	
Sex/Age-class/Family status	(frequency by yearly total)	
	2005	2006
Female coy	$20(0.032)$	$40(0.048)$
Female yearlings	$15(0.024)$	$34(0.040)$
Female sub-adults (2-5)	$61(0.098)$	$74(0.088)$
Female adults with no cubs	$81(0.130)$	$99(0.118)$
Female adults with 1 coy	$22(0.035)$	$22(0.026)$
Female adults with 2 coy	$16(0.026)$	$27(0.032)$
Female adults with 1 yearling	$14(0.022)$	$24(0.029)$
Female adults with 2 yearlings	$13(0.021)$	$25(0.030)$
Male coy	$35(0.056)$	$37(0.044)$
Male yearlings	$26(0.042)$	$39(0.046)$
Male subadults (2-5)	$43(0.069)$	$81(0.096)$
Male adults	$277(0.445)$	$339(0.403)$
Total bears	623	841

Figure 1. The Baffin Bay, Davis Strait, Gulf of Boothia, M'Clintock Channel and Viscount Melville polar bear (Ursus maritimus) populations.

Acknowledgements
Funding for Davis Strait mark-recapture work was provided by the governments of Nunavut (GN) and Newfoundland and Labrador (N\&L) the Nunavut Wildlife Management Board (NWMB), Makivik Corporation, Parks Canada and the Polar Continental Shelf Project. In-kind support and field assistance was provided by the GN (C. Didham, C.

Hotson) and N\&L (R. Otto, R. Jefferies), Makivik (B. Doidge, B. Ford), Parks Canada (A. Simpson). Additional logistical support and traditional knowledge was provided by the Hunting and Trapping Organizations of Iqaluit (N. Shamayuk), Pangnirtung, and Kimmirut. We thank M. Kuc for computer programming. We thank D. Garshelis for reviewing an earlier draft of the manuscript.

Appendix I

The adjusted L-P estimate is generated from post hoc adjustments applied to the L-P estimators with Chapman (1951) correction: $T=N_{\text {ma }}+\left(N_{m F} * p_{c o s}\right)+\left(N_{m F} * p_{v m i}\right)$, where T is the total population size, $N_{\text {ind }}$ the L-P estimate of the number of independent polar bears; $N_{m f}$ is the sum of the L-P estimates of the number males and females, $p_{\text {coy }}$ and $p_{y r l}$ are the mean proportion of COY and yearlings, respectively, in annual capture samples; these proportions have associated SD. $N_{\text {ind }}$ and $N_{m f}$ have the associated SE of the L-P estimator (Chapman 1951). An algorithm for generating random variates from the distributions of the input values follows the polar method adapted from Law and Kelton (1991). Input values are sampled with Monte Carlo techniques from the distributions associated with $N_{i n d}, N_{m f}, p_{c o y}$ and $p_{y r l}$. The outcome is a normal distribution of T, with variance. The simulation was implemented in Microsoft Excel using the Visual Basic for Applications (VBA).

[^0]: ${ }^{1}$ Wildlife Research Section, Department of Environment, Government of Nunavut, P.O. Box 209, Igloolik, NU X0A 0L0

